Polycationic peptides from diatom biosilica that direct silica nanosphere formation.
نویسندگان
چکیده
Diatom cell walls are regarded as a paradigm for controlled production of nanostructured silica, but the mechanisms allowing biosilicification to proceed at ambient temperature at high rates have remained enigmatic. A set of polycationic peptides (called silaffins) isolated from diatom cell walls were shown to generate networks of silica nanospheres within seconds when added to a solution of silicic acid. Silaffins contain covalently modified lysine-lysine elements. The first lysine bears a polyamine consisting of 6 to 11 repeats of the N-methyl-propylamine unit. The second lysine was identified as epsilon-N,N-dimethyl-lysine. These modifications drastically influence the silica-precipitating activity of silaffins.
منابع مشابه
Establishing super-resolution imaging for proteins in diatom biosilica
The intricate, genetically controlled biosilica nano- and micropatterns produced by diatoms are a testimony for biology's ability to control mineral formation (biomineralization) at the nanoscale and regarded as paradigm for nanotechnology. Previously, several protein families involved in diatom biosilica formation have been identified, and many of them remain tightly associated with the final ...
متن کاملBiosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis.
The biological formation of inorganic materials with complex form (biominerals) is a widespread phenomenon in nature, yet the molecular mechanisms underlying biomineral morphogenesis are not well understood. Among the most fascinating examples of biomineral structures are the intricately patterned, silicified cell walls of diatoms, which contain tightly associated organic macromolecules. From d...
متن کاملCationic Amino Acids Specific Biomimetic Silicification in Ionic Liquid: A Quest to Understand the Formation of 3-D Structures in Diatoms
The intricate, hierarchical, highly reproducible, and exquisite biosilica structures formed by diatoms have generated great interest to understand biosilicification processes in nature. This curiosity is driven by the quest of researchers to understand nature's complexity, which might enable reproducing these elegant natural diatomaceous structures in our laboratories via biomimetics, which is ...
متن کاملSilica formation in diatoms: the function of long-chain polyamines and silaffins
The formation of inorganic minerals under the control of an organism (biomineralization) is a widespread phenomenon in nature. Silica is the second most abundant biomineral being exceeded only by biogenic CaCO3. 1 Many landplants (e.g. rice, cereals, cucumber) deposit silica in significant amounts to reinforce their tissues and as a systemic response to pathogen attack. Furthermore, there is ev...
متن کاملBiosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells
In the past decade, mesoporous silica nanoparticles (MSNs) with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by tradi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 286 5442 شماره
صفحات -
تاریخ انتشار 1999